MANONMANIAM SUNDARANAR UNIVERSITY TIRUNELVELI

UG COURSES – AFFILIATED COLLEGES

B.Sc. Statistics (Choice Based Credit System)

(with effect from the academic year 2016-2017 onwards)

(44th SCAA meeting held on 30.05.2016)

Part	Title of the Subject		Status	Instructional	Credits	Exam	Maximum Marks			Passing Minimum	
			5	hours/week	creates	Hrs	CIA	UE	Total	Exter nal	Total
	SEMESTER - III										
I 3.1 Tamil / Other Languages – III Language					3	3	25	75	100	30	40
II	3.2	English – III	Language	6	3	3	25	75	100	30	40
III	3.3	Statistical Distributions	Core	4L + 2T	4	3	25	75	100	30	40
III	3.4	Mathematics – II	Allied	6	4	3	25	75	100	30	40
IV	3.5	Elective – I (Non-Major) Real Analysis	ENM	2	2	3	25	75	100	30	40
IV	3.6	Statistical Analysis using Software-I	SBS	4	4	3	25	75	100	30	40
		Total		30	20						
			SEMES	TER - IV							
Ι	4.1	Tamil / Other Languages IV	Language	6	3	3	25	75	100	30	40
II	4.2	English – IV	Language	6	3	3	25	75	100	30	40
III	4.3	Demographic Methods	Core	4	4	3	25	75	100	30	40
III	4.4	Statistical Practical – II **	Core (Practical)	4	4	3	50	50	100	20	40
III	4.5	Mathematical Computations using R	Allied	4	4	3	25	75	100	30	40
IV	4.6	Elective – II (Non-Major) Matrix Theory	ENM	2	2	3	25	75	100	30	40
IV	4.7	Numerical Methods	SBS	4	4	3	25	75	100	30	40
V	4.8	Extension Activity			1	3				30	40
		Total		30	25						

Note: 1 EM : Elective (Major)	CIA : Continuous Internal Assessment
ENM : Elective (Non-Major)	UE : University Examination
SBS : Skill Based Subject	T : Tutorial
	L : Lecture
Note: 2 *Statistical Practical – I is based on th	he courses: 1.3 Descriptive Statistics
	2.3 Sampling Techniques
	2.4 Time Series and Official Statistics
** Statistical Practical – II is based on the cours	ses: 3.3 Statistical Distributions 4.3 Demographic Methods 4.7 Numerical Methods
***Statistical Practical – III is based on the cour	
	5.2 Statistical Quality Control 6.1 Statistical Inference - II
	6.2 Design of Experiments
	6.3 Operations Research

****Statistical Practical – IV is based on all core subjects from Semester –I to Semester –VI

(Objective: Providing knowledge on collection and analysis of the data applying appropriate statistical tools using Statistical Software)

LIST OF ELECTIVE SUBJECTS

Elective - III

- 1. Econometrics
- 2. Stochastic Processes
- Elective IV
 - 1. Actuarial Statistics
 - 2. Java Programming
- Elective V
 - 1. Discrete Mathematics
 - 2. RDBMS with ORACLE

QUESTION PAPER PATTERN (For Theory Subjects)

B.Sc., Degree Examinations STATISTICS (CBCS)

Maximum: 75 marks

PART - A $(10 \times 1 = 10 \text{ marks})$ Ten Multiple choice Questions (Two questions shall be asked from each unit with 4 choices each) Answer ALL questions

Each question carries 1 mark

1.			
2.			
3.			
4.			
5.			
6.			
7.			
8.			
9.			
10.			

PART - B ($5 \times 5 = 25$ Marks)

Five Questions (One question shall be asked from each Unit) with internal choice Answer ALL questions Each question carries 5 marks 11. (a) (OR)

(b) 12. (a) (b) 13. (a) (b) 14. (a) (b) 15. (a) (OR) (OR) (OR)

Time: Three Hours

1

(b)

	$PART - C (5 \times 8 = 40 \text{ marks})$
	Five Questions (One question shall be asked from each Unit) with internal choice.
	Answer ALL questions Each question carries 8 marks)
16. (a)	Lach question earnes 8 marks)
10. (a)	(OR)
(b)	
17. (a)	
	(OR)
(b)	
18. (a)	
	(OR)
(b)	
10 (2)	
19. (a)	(OR)
(b)	
20. (a)	
	(OR)
(b)	

QUESTION PAPER PATTERN (For Practical Subjects)

B.Sc., Degree Examinations STATISTICS (CBCS)

Time: Three Hours

Maximum: 75 marks

<u>Statistical Practical – I</u> Answer any 5 Questions without omitting any section Each question carries 15 marks

 $(5 \times 15 = 75 \text{ Marks})$

Section A

Section B

1.	Descriptive Statistics
2.	Descriptive Statistics
3.	Descriptive Statistics
4.	Sampling Techniques
5.	Sampling Techniques

6. Sampling Techniques

Section C

7. Time Series and Official Statistics

8. Time Series and Official Statistics

9. Time Series and Official Statistics

10. Time Series and Official Statistics

Statistical Practical – II Answer any 5 Questions without omitting any section Each question carries 15 marks

 $(5 \times 15 = 75 \text{ Marks})$

Section A

- 1. Statistical Distributions
- 2. Statistical Distributions
- 3. Statistical Distributions
- 4. Statistical Distributions

Section B

- 5. Demographic Methods
- 6. Demographic Methods
- 7. Demographic Methods

Section C

8. Numerical Methods

9. Numerical Methods

10. Numerical Methods

Statistical Practical – III Answer any 5 Questions without omitting any section

Each question carries 15 marks

 $(5 \times 15 = 75 \text{ Marks})$

Section A 1. Statistical Inference – I 2. Statistical Inference - I Section B 3. Statistical Quality Control 4. Statistical Quality Control Section C 5. Statistical Inference – II 6. Statistical Inference - II Section D 7. Design of Experiments 8. Design of Experiments Section E 9. Operations Research 10. Operations Research

Statistical Practical – IV Answer any 5 Questions without omitting any section Each question carries 15 marks

	Section A
1. Descriptive Statistics	
2. Sampling Techniques	
3. Time Series and Official Statistics	
	Section B
4. Statistical Distributions	<u></u>
5. Demographic Methods	
6 Numerical Methods	
0. Inumerical methods	a .: a
	Section C
7. Statistical Inference - I	
8. Statistical Quality Control	
9. Statistical Inference – II	
10. Design of Experiments	
11. Operations Research	
•	* * * * * * * * * *

Grading system with Ten point scale approved by standing committee on Academic Affairs of our University is given below:

Percentage Grade point		CGPA	Grade	Performance		
of Marks						
95-100	9.5 - 10	9.5 and Above	0	Outstanding		
85-94	8.5 - 9.4	8.5 and Above	Е	Excellent		
75-84	7.5 - 8.4	7.5 and Above	D	Distinction		
60-74	6.0 - 7.4	6.0 and Above	А	Very Good		
50-59	5.0 - 5.9	5.0 and Above	В	Good		
40-49	4.0 - 4.9	4.0 and above	С	Average		
Up to 39	0	0	RA	Re-Appear		

The overall performance level of candidates will be assessed by cumulative weighted Average of marks and Cumulative weighted Average Grade Points. These can be calculated using the following:

Weighted Marks=Marks×Credit

Cumulative Weighted Average of Marks(CWAM) = $\frac{\text{Sum of Weighted Marks}}{\text{Sum of credits}}$

Weighted Grade Point = Grade Point × Credit

Cumulative Weighted Average Grade Point (CGPA) = $\frac{\text{Sum of Weighted Grade Points}}{\text{Sum of credits}}$

Calculation of these performance measures is illustrated below:

SUB.			MARKS SECURED			G.		Weighted
CODE	SUBJECT TITLE	PART	INT	EXT	тот	Р	Cr.	Grade point
		I	19	32	51	5.1	3	15.3
		П	13	30	43	4.3	3	12.9
		Ш	17	41	58	5.8	4	23.2
1.1	Tamil / Other Languages -I	Ш	20	30	50	5	4	20
1.2 1.3	English – I Subject 2 Subject 3 Subject 4 Subject 5 Tamil / Other Languages - II	Ш	16	35	51	5.1	4	20.4
1.4 1.5		IV	23	45	68	6.8	2	13.6
1.6 2.1		I	17	54	71	7.1	3	21.3
2.2 2.3	English – II Subject 6	П	12	52	64	6.4	3	19.2
2.3 2.4 2.5	 4 Subject 7 5 Subject 8 6 Subject 9 	ш	18	54	72	7.2	4	28.8
2.6		Ш	19	52	71	7.1	4	28.4
2.7		ш	18	54	72	7.2	4	28.8
		ш	19	52	71	7.1	4	28.4
		IV	29	54	83	8.3	2	16.6

If the marks secured by a students in various subjects as given in the following table

The CWAM for each part can be calculated as follows:

CWAM for Part I =
$$\frac{(51 \times 3) + (71 \times 3)}{3+3} = \frac{153 + 213}{3+3} = \frac{366}{6} = 61$$

CWAM for Part II =
$$\frac{(43 \times 3) + (64 \times 3)}{3+3} = \frac{129 + 192}{3+3} = \frac{321}{6} = 53.5 = 54$$

CWAM for Part III & IV =
$$\frac{(58 \times 4) + (50 \times 4) + (51 \times 4) + (68 \times 2) + (72 \times 4) + (71 \times 4) + (72 \times 4) + (71 \times 4) + (83 \times 2)}{4 + 4 + 4 + 2 + 4 + 4 + 4 + 4 + 2}$$

$$=\frac{232+200+204+136+282+284+288+284+166}{4+4+4+2+4+4+4+4+2}=\frac{2082}{32}=65.0625=65$$

The CGPA for each part can be calculated as follows:

CGPA for Part I =
$$\frac{(5.1 \times 3) + (7.1 \times 3)}{3+3} = \frac{15.3 + 21.3}{3+3} = \frac{36.6}{6} = 6.1$$

CGPA for Part II = $\frac{(4.3 \times 3) + (6.4 \times 3)}{3+3} = \frac{12.9 + 19.2}{3+3} = \frac{32.1}{6} = 5.35 = 5.4$
CGPA for Part III & IV = $\frac{(5.8 \times 4) + (5 \times 4) + (5.1 \times 4) + (6.8 \times 2) + (7.2 \times 4) + (7.1 \times 4) + (7.2 \times 4) + (7.1 \times 4) + (8.3 \times 2)}{4+4+4+2+4+4+4+4+2}$

$$=\frac{23.2+20+20.4+13.6+28.2+28.4+28.8+28.4+16.6}{4+4+4+2+4+4+4+4+2}=\frac{208.2}{32}=6.50625=6.5$$

SUBJECTS	CWAM	CGPA
Part – I : Language	61	6.1
Part –II : English	54	5.4
Part III & IV :	65	6.5
Part V :	-	-

MSU/2016-17/UG-Colleges/Part-III (Statistics) Semester-III/Core-5

STATISTICAL DISTRIBUTIONS

Unit - I

Distribution functions of one dimensional and two dimensional random variables – applications of Jacobian marginal, conditional distributions - expectation.

Unit - II

Discrete distributions: One-point distribution, Bernoulli, Binomial, Poisson, Recurrence relations for probabilities, Geometric and Negative binomial distributions – Hyper geometric distribution, Multinomial distribution and discrete Uniform distribution- Moments – moment generating function, Characteristic function, Cumulant Generating function. Fitting of Binomial and Poisson distributions.

Unit - III

Continuous distributions: Uniform, Normal, Cauchy and Lognormal distributions- concepts, moments, moment generating and characteristic functions and their properties.

Unit - IV

Exponential, Gamma, Beta (first and second kinds) concepts, moments, moment generating and characteristic functions and their properties.

Unit - V

Sampling distributions: Chi-square, t and F distributions- concepts, moments, moment generating and characteristic functions and their properties.

- 1. Gupta, S. C., and V. K. Kapoor (2000) Fundamentals of Mathematical Statistics, A Modern Approach (Eighth Edition). Sultan Chand & sons. New Delhi.
- 2. Alexander, M. Mood, Franklin A. Graybill and Duane C. Boes (1974) Introduction to the Theory of Statistics (Third Edition), Mc Graw Hill Comp Ltd. New Delhi.
- 3. Goon, A. M., M. K. Gupta and B. Dasgupta (2002) Fundamentals of Statistics, Vol. I, World Press Kolkata.
- 4. Rohatgi, V. K. and A. K. md. Ehsanes Saleh (2009) An Introduction to Probability Theory and Mathematical Statistics, 2nd Edition, Wiley Eastern Limited, New Delhi.
- 5. Parimal Mukopadhyay (2006) Mathematical Statistics, (Third Edition), Books and Allied Private Limited, Kolkata.
- 6. Robert, V. Hogg and Allen T. Craig (2012) Introduction to Mathematical Statistics (Fourth Edition), Macmillan Publishing Co., Inc. New York.
- 7. Harold J. Larson (2004) Introduction to Probability Theory and Statistical Inference (Third Edition), John Wiley & Sons. Inc., New York.
- 8. Edward J. Dudewicz and Satya N. Mishra (2007). Modern Mathematical Statistics, John Wiley & Sons. Inc., New York.
- 9. Rice, J.A. (2007) Mathematical Statistics & Data Analysis (Third Edition), Thomas Brooks/Col, Singapore.

MSU/2016-17/UG-Colleges/Part-III (Statistics) Semester-III/Allied

MATHEMATICS – II

Unit - I

Theory of Equations: Nature of roots, Formulation of equation whose roots sre given. Relation between coefficients and roots - Transformation of equations - Reciprocal equations - Horner's method of solving equatios.

Unit - II

Successive differentiation – Trignometrical tranformations - Leibnitz's Formulas, nth derivatives of standard functions - simple problems. Partial differentiation – Successive partial differentiation – Implicit functions – homogeneous functions – Euler's theorem.

Unit - III

Maxima and Minima for one variable – Applicationas – Concavity, Convexsity and points of inflexion - Maxima and Minima for two variables – working rule.

Unit – IV

Linear differential equations of second order with constant coefficients - $(aD^2+bD+c)y = X$, various forms of X : $e^{\alpha x}$, cos $\alpha x \sin \alpha x$, x^m . Methods of solving homogenious linear differential equations of second order. Laplace transform and its inverse – solving ordinary differential equation with constant coefficients using Laplce transform.

Unit - V

Integration- Reverse process of differentiation – Methods of integration - Integrals of functions containing linear functions of x - Integrals of functions involving $a^2 \pm x^2$ - Integration of rational algebraic functions - $1/(ax^2+bx+c)$, $(px+q)/(ax^2+bx+c)$. Integration of irrational functions - $1/(ax^2+bx+c)^{1/2}$, $(px+q)/(ax^2+bx+c)$ - Integration by parts.

- 1. Narayanan, S. and T.K. Manicavachagom Pillay (2008) Calculus Vol. II and III, S. Viswanathan Pvt. Ltd, Chennai.
- 2. Narayanan, S., Hanumantha Rao and T.K. Manicavachagom Pillay (2008) Ancillary Mathematics, Volume I, S. Viswanathan Pvt. Ltd, Chennai.

MSU/2016-17/UG-Colleges/Part-III (Statistics) Semester-III/Non-Major Elective -I

REAL ANALYSIS

Unit - I

Set Theory: Operations on sets, Countability, Real number, Least Upper Bound, Greatest Lower Bound, Set of real numbers, limits, Open and Closed sets.

Unit - II

Sequences: Definition of Sequence, Limit of a sequence, Convergent and Divergent sequences, Bounded and Monotone sequences, Limit Infimum, Limit Supremum, Cauchy sequences, summability of sequences. **Unit - III**

Series: Series of real numbers. Convergence and divergence-series with nonnegative terms - comparison test - D'Alembert's ratio test - Cauchy's root test. Alternating series - conditional convergence - absolute convergence - Leibnitz test.

Unit - IV

Differentiation: Limit of a function of a single variable, Continuity properties of a continuous function in a closed interval, Derivatives, Rolle's Theorem, Mean value theorem, Taylor's theorem.

Unit - V

Integration: Concept of Riemann Integral, Sufficient condition for Riemann integrability, Darboux theorem, Fundamental theorem, First mean value theorem – Improper Riemann integrals. Beta and Gamma Integrals.

- 1. Arora, S. (1988) Real Analysis. Satya PrakashanMandir, New Delhi.
- 2. Shanthi Narayan. (2003) Elements of Real Analysis, S. Chand & Co, New Delhi
- 3. Somasundaram, D. and Choudhary, B. (2002) A First Course in Mathematical Analysis, Narosa, Chennai
- 4. Rudin, W. (2000) Principles of Mathematical Analysis, McGraw Hill, New York.
- 5. Malik, S.C. and Arora,S. (2009) Mathematical Analysis, New Age Science, New Delhi.

MSU/2016-17/UG-Colleges/Part-III (Statistics) Semester-III/Skill Based -I

STATISTICAL ANALYSIS USING SOFTWARE - I

(The following exercise s should be carried out using software)

Unit –I

- Solving a system of equations applying Cramer's rule and Inverse of matrix.
- Fitting of linear and quadratic models.

Unit –II

- Construction of frequency table univariate, bivariate data.
- Drawing frequency graphs.
- Construction of diagrams: Bar diagrams, Pie diagrams etc.

Unit – III

- Calculation of measures of central tendency mean, median and mode.
- Calculation of measures of dispersion quartile deviation, standard deviation, coefficient of variation.

Unit – IV

- Calculation of Karl Pearson's coefficient of correlation.
- Fitting of simple linear regression equation.

Unit - V

- Fitting of binomial distribution.
- Fitting of Poisson distribution.
- Fitting of normal distribution.

MSU/2016-17/UG-Colleges/Part-III (Statistics) Semester-IV/Core -6

DEMOGRAPHIC METHODS

Unit - I

Demography Data: Demography – definition-sources of demographic data - population census - demographic surveys - Registration method: vital registration - population register and other administrative records, registration of population in India.

Unit - II

Fertility: Fertility measurements – crude birth rates - general, specific and total fertility rates - gross and net reproduction rates and their interpretation.

Unit - III

Mortality : Mortality measurements: crude death rate - specific death rate -standardized death rate - infant mortality rate – maternal mortality rate – case fertility rate -comparative mortality index – force of mortality – graduation mortality rates - Makeham's law.

Unit – IV

Life Table and Migration : Description and construction of various columns of a life table and their relationships - construction of an abridged life table – Reid and Pearl method - uses of life table – migration-factors effecting migration - gross and net migration rates.

Unit - V

Population Growth: Population projection – population estimates and projection –arithmetic, geometric and exponential growth rates - logistic curve and its suitability for graduating population data - Basic ideas of stationary and stable population.

- 1. Agarwala, S.N. (1991) Indian Population Problems, Tata Mc Graw Hill Publishing House, New Delhi.
- 2. Goon, A. M., Gupta. M. K and B. Das Gupta (1993) Fundamentals of Statistics- Vol.II. World press Ltd, Kolkata.
- 3. Gupta, S.C, and V. K. Kapoor (2007) Fundamentals of Applied Statistics, Sultan Chand & Sons, New Delhi.
- 4. Mishra, D.E. (1982) An introduction to the Study of Population, South India Publishers, Madras.
- 5. Hansraj, D.R. (1981) Fundamentals of Demography, Surjeet publications, New Delhi
- 6. Asha A. Bhende and Tara Karitkar (1994) Principles of Population Studies, Himalaya Publishing House Pvt Ltd., Mumbai.

MSU/2016-17/UG-Colleges/Part-III (Statistics) Semester-IV/Core Practical

STATISTICAL PRACTICAL - II

(The following exercises should be carried out using non-programmable scientific calculator)

Statistical Distributions

- 1. Determination of the distribution function of a random variable X.
- 2. Find the marginal distributions of two random variables X, Y and obtain the conditional probability distribution of $X \mid Y$.
- 3. Determination of mean and variance using expectation.
- 4. Fitting of Binomial distribution.
- 5. Fitting of Poisson distribution.
- 6. Fitting of Normal distribution.
- 7. Random number generation (using Remainder, Quotient approach).

Demographic Methods

- 8. Calculation of crude birth, general, specific and total fertility rates; Gross and net reproduction rates.
- 9. Calculation of crude death, specific, standardized death rates; infant mortality rates.
- 10. Construction of life table.

Numerical Methods

- 11. Solving system of linear equations using Cramer's rule.
- 12. Solving linear equations using inverse of matrix.
- 13. Evaluation of degree of polynomials using Newton's forward and backward interpolation method.
- 14. Determination of roots using Newton Raphson method.
- 15. Evaluation of partial derivatives applying Euler's method.
- 16. Evaluation of degree of polynomials using Lagrange's method.
- 17. Solving a system of linear equations using Gaussian Elimination method.
- 18. Evaluation of integral applying trapezoidal rule.
- 19. Evaluation of integral using Simpson's one third rule.
- 20. Evaluation of integral using Simpson's three eighth rule.

MSU/2016-17/UG-Colleges/Part-III (Statistics) Semester-IV/Allied

MATHEMATICAL COMPUTATIONS USING R

UNIT-I

Introduction - History of R programming - R commands – Random numbers generation – Data Types – Objects – Basic data and Computations – Data input – Data frames – Graphics – Tables.

UNIT-II

Descriptive Statistics - Diagrammatic representation of data - measures of central Tendency - measures of dispersion - measures of skewness and kurtosis.

UNIT-III

Probability and probability distributions - problems on finding basic probabilities - some special discrete distributions – Bernoulli distribution - Binomial distribution – Poisson Distribution – Geometric Distribution.

UNIT-IV

Continuous distribution – Normal distribution – Uniform distribution – Gamma distribution – Exponential distribution - sketching graphs for various distributions.

UNIT-V

Correlation - inference procedure for correlation coefficient - bivariate correlation - multiple correlations - Linear regression and its inference procedure.

BOOKS FOR STUDY:

- 1. Normal Maltoff (2009) The art of R programming, William Pollock Publishers, San Fransisco
- 2. Purohit S. G., Gore S. D. and Deshmukh S. K. (2010) Statistics using R, Narosa Narosa

Publishing House Pvt. Ltd., New Delhi.

- 3. John Braun, W. and Duncan James Murdoch (2007) First Course in Statistical Programming with R, Cambridge University Press, Uk.
- 4. Ugarte, M. D., A. F. Militino, A. T. Arnholt (2008) Probability and Statistics with R, CRC Press, Taylo & Francis Group, London.
- 5. Peter Dalgaard (2008) Introductory Statistics with R, Springer India Private Limited, New

Delhi.

6. Michael J. Crawley (2007) The R Book, John Wiley and Sons, New York.

MSU/2016-17/UG-Colleges/ (Statistics)/Semester-IV/

Non-Major Elective– II

MATRIX THEORY

Unit - I

Matrices and System of Linear Equations: Transpose-Conjugate transpose. Adjoint of a matrix, Inverse of a matrix, Singular and Non -Singular matrices. Orthogonal and Unitary matrices. Use of inverse of a matrix to find the solution of a system of linear equations - conditions for consistency of equations.

Unit - II

Rank of a matrix: Elementary transformations, Elementary matrices, Row and Column ranks – rank of a matrix. Invariance of rank through elementary transformations, Reduction to Normal form, Rank of sum and product of matrices, Equivalent matrices.

Unit - III

Characteristic Roots and Vectors: Matrix polynomials, Characteristic roots and vectors, Cayley-Hamilton theorem, Minimal equation of a matrix.

Unit – IV

Matrix Algebra: Introduction – Operations on Matrices – Symmetric and Skew-symmetric Matrices – Conjugate of a Matrix – Determinant of a Matrix – Adjoint and Inverse of a Matrix – Singular and Non-singular Matrices - Inverse of Matrices.

Unit - V

Quadratic Forms: Quadratic Form – Matrix of a quadratic form – rank, signature and classification of quadratic forms – Sylvester's of Inertia.

- 1. Vasishtha, A.R. (2014) Matrices, Krishna Prakashan, Meerut.
- 2. Shanthi Narayan. and Mittal, P.K. (2000) A Text Book of Matrices, S.Chand& Co, New Delhi
- 3. Gentle, J.E. (2007) Matrix Algebra Theory, Computations, and Applications in Statistics, Springer, New York.
- 4. Richard Bronson. (2011) Matrix Operations, Schaum'sOuline Series, McGraw Hill, New York.
- 5. Searle, S. R. (2006) Matrix Algebra useful for Statistics, Wiley Interscience, New York.

MSU/2016-17/UG-Colleges/ (Statistics)/Semester-IV/Skill Based - II

NUMERICAL METHODS

Unit - I

Elimination method, Gauss -Jocobian and Gauss- Seidel methods. Solving system of linear equations using Cramer's rule and inverse of matrix.

Unit - II

Solving algebraic equations: Bisection method, False position method, Newton - Raphson method.

Unit - III

operators and differences: Operators – E, $\Delta,\,\delta$ and $\,\nabla$, and their relationship and their role in difference tables.

Interpolation: Solving problems for equidistant cases using Newton's Forward and Backward difference formula - Lagrange's formula for unequal intervals.

Unit - IV

Numerical differentiation – Newton's forward and backward formula – maxima and minima using numerical methods.

Unit - V

Numerical Integration: Trapezoidal rule - Simpson's one - third rules and three-eighth rule – Gragry Formula, Newton – Cole's formula.

- 1. Sastry, S. S. (2005) Introductory Methods of Numerical Analysis, Prentice Hall of India.
- 2. Atkinson, K. (2004) Elementary Numerical Analysis (2nd Edition), John Wiley & sons, New York.
- 3. Gerald, C. F. and P. O. Wheatley (2003) Applied Numerical Analysis (4th Edition), Addison-Wesley.
- 4. James B. ScarBorough, (2010) Numerical Mathematical Analysis (6th Edition) Oxford & IBH publishing Co.,
- 5. Jain, M. K., S. R. K. Iyengar, R.K. Jain (2010) Numerical Methods for Scientific and Engineering Computation (Second Edition), Wiley Eastern Limited, New Delhi.